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1. Introduction, Summary, and Recommendations 
 

 The objective of this project was to explore ways to process magnetometer or 

electromagnetic induction (EMI) sensor data so that UXO discrimination processing UXO can be 

enhanced. Suppression of clutter was a principal focus. To this end, magnetic field data obtained 

above and near the ground surface was regarded as something of a boundary condition. As such, 

it should allow inference of magnetic fields or associated source distributions either upwards or 

downwards. The former is done to reduce noise and clutter signals, the latter to observe 

concentration of field or source values around the location of a subsurface object of interest. This 

was done here solely on the basis of the governing physics, without application of any particular 

kind of target modeling and its attendant optimization searches for position, orientation, and 

target properties. Classical geophysical processing of this sort, using the data over a measurement 

surface from a single, widespread response field, constitutes “continuation” of that field. To our 

knowledge, this study is the first attempt to apply the concepts to transient electromagnetic 

induction surveying, particularly for the kind of high-resolution, shallow sensing needed for UXO 

discrimination. Our application in EMI is distinguished by the fact that oblique (non-vertical) 

magnetic field components must be used, and the associated source distributions computed must 

be displaced from the plane of measurement.  

 

 For true continuation, it is essential that the measurements all pertain to a single, though 

spatially varying field. In magnetometry surveying, the excitation (primary) field is the earth’s 

magnetic field. For all practical purposes, this static field is uniform over the survey area around a 

target. All measured responses therefore constitute static responses to the same excitation. In 

particular, all data obtained around a buried object simply constitute samples at different locations 

of the same response field emanating from the target, as that field varies in magnitude and vector 

orientation from place to place. The time domain (TD) EMI system used in this project is similar 

in its nature, despite the transience in the responses. Here the transmitted primary field, while 

different from the earth’s field, is also unchanging in magnitude and orientation over the region 

around the target. While surveyors rove about with local receivers, the excitation of the target is 

always the same; its internal response is always the same; and it is always producing the same, 

spatially varying exterior distribution of magnetic field in response, which is observed from 

different vantage points. As the TD EMI data obtained here constitute a distributed sampling of 
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the same, single response field it can likewise serve as a consistent boundary condition, or the 

equivalent, for that field. The receivers used here are magnetometers of much the same kind as 

are used in static magnetometry surveys. At each point in time they simply catch a snapshot of the 

transient magnetic field. All results developed here for TD EMI thus apply directly to treatment 

of magnetometry data. 

 

 Note that the nature of the data described above is fundamentally different from that 

obtained with most of the popular man- or cart-portable EMI sensors used in UXO surveying and 

related studies (EM-61, EM-63, GEM sensors...).   Those sensors are “mono-static” in the sense 

that local transmitters and receivers are approximately co-located. As a sensor of this sort 

proceeds through a survey, the spatial relation between the transmitter and target constantly 

changes. The primary field impinging on the target constantly changes. Data obtained at each 

location is a sample only of the field in response to the excitation transmitted from that location. 

Therefore a spatial array of such data cannot constitute a boundary condition, or the equivalent, in 

the same sense as used above. One might say that data at different points constitute samples of 

different boundary conditions, i.e. from a different fields. Consequently the data cannot be used 

for continuation, at least in the classical sense.  We return to the topic of upward or downward 

projection of data from mono-static sensors in our recommendations below. Meanwhile, all work 

in this project pertains to more classical continuation of single fields.  

 

 To our knowledge, in connection with surveying applicable to UXO discrimination only 

some short distance upward continuation of static magnetometry data has been applied heretofore 

[1]. The classic 1965 text by Grant and West [2] still provides an excellent treatment of the 

fundamental relations needed, as well as some vital computational maneuvers, if only discussed 

with reference to static magnetic and gravitational fields. In those areas of application, the 

possible utility of upward and, occasionally, downward continuation are recognized in well 

known contemporary geophysics texts, e.g. [3, 4] 

 

 Clutter is the bane of EMI surveying for subsurface UXOs under realistic circumstances. 

Isolating the contributions of different signal sources and suppressing clutter responses would 

take us a long way towards reliable subsurface UXO discrimination. The work performed here 

successfully suppressed clutter in field data, even when the local clutter signal was two to three 

times that of the broader underlying UXO response and was situated directly on and within it. 

The success of the approach is directly tied to the fact that it relies on the governing physics [5, 
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6], and not on signal processing stratagems divorced from that physics or idealizing it unduly.  

Beyond use of the applicable physics in the numerical formulations and computations, that 

physics is also at the root of the phenomenology exploited for advantage in upward continuation. 

The relevant phenomenology is explained briefly as follows. 

 

 Consider the response from a discrete object that is subject always to the same primary 

field, when the receiver is at least a characteristic length from the object. The magnitude of the 

signal is (approximately) inversely proportional to the cube of the distance d between receiver 

and object, 

 

 3~ bS
d

 (1) 

 

where the constant of proportionality a depends partly on shape and object composition but most 

significantly on the size of the object. For example, in the case of a sphere, b is proportional to the 

object’s volume. Thus a sphere with a diameter that is substantially larger than that of another 

will produce a larger signal in proportion to the cube of the ratio of their diameters, if other things 

are equal.  We assume here that, from the point of view of UXO clean up, to qualify as a clutter 

item an object must be significantly smaller than a target of interest, i.e. UXO.  So, why would 

one worry about an inherently smaller signal? The answer is that “other things are [not!] equal.” 

By (1), a small metallic item on the ground surface that is, say, ten times closer to a sensor than a 

buried UXO gains in relative signal magnitude by a factor of 103, relative to what would be seen 

if they were the same distance away. This can often more than make up for the inherent weakness 

of the clutter’s response, raising it to problematical prominence. Overall, clutter will only be 

important if it is near the surface.  

 

 Upward continuation can be used to take advantage of this kind of power law signal 

dependence to suppress the relative importance of near-surface clutter. From the discussion 

above, if the magnitudes of two signals from a given object are compared, when obtained from 

different distances d1 and d2, the ratio of signal strengths will be  

 

 
3

2 1

1 2

~S d
S d

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (2) 
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Thus raising the observation point relative to a near-surface piece of clutter will engender a much 

larger proportional diminution of signal strength than would be the case for a deeper target of 

interest. See Figure 1. As the sensor is raised, the quantity (dc1/dc2)3 diminishes the clutter’s 

response by a much greater amount than (dt1/dt2)3 reduces the UXO’s. 

 

                    
 

Figure 1.  Two elevations of a sensor (receiver) relative to a combination of near-surface 
clutter item and deeper UXO. 

 

 

 This effect was explored in some detail by the PI in another SERDP project (MM-1282) 

and was reported in its Final Technical Report as well as reference [7]. As noted in those 

references, the principal difficulty in trying to take advantage of this phenomenon is that it may 

be impractical to raise the sensor. It may be physically quite difficult to do so, and perhaps more 

fundamentally, all the signals involved may become too weak to be useful. Basically, in trying to 

shift the relative balance of target and clutter signals one may produce overall SNRs that are 

intolerable.  The motivation for pursuing upward continuation (UC) comes specifically from the 

recognition that it will not be troubled by these problems. We do not have to worry about 

generating worse relative noise levels at greater distances if we do not actually have to perform 

the measurements. More specifically, UC will actually tend to increase the SNR relative to 

random noise and error. Just as UC will reduce the kind of signal perturbation caused by clutter 

such as that indicated schematically in Figure 1, it will also reduce irregularities caused by other 



  -  - 5

perturbations such as uneven ground effects, positional errors, etc. Both simulations (Section 3.1) 

and field tests (Section 3.2) demonstrate this, while Section 5 explores some of the basis for it. 

 

 Downward continuation (DCN) has various meanings in the geophysics literature, 

sometimes phasing into broader inferences of subsurface structures and phenomena than just 

computation of signals at lower (subsurface) elevations. In any case, its purpose is generally to 

isolate subsurface sources for signals of interest.  Here, UC was accomplished by solving for a 

distribution of equivalent magnetic sources over some plane at an arbitrary distance below that on 

which data were obtained. These sources can then predict the signal that would be obtained at any 

location above the original data plane. This is a much simpler computational approach than those 

in noise-amplifying differential equation UC approaches. Our UC system goes through the same 

computational motions as would be required to solve for sources over deeper and deeper planes, 

as in a variety of DCN. The same overall algorithms were used here for both UC and (what we 

are calling) downwards continuation. 

 

 Solution for sources over a plane displaced from the data plane brings ill-conditioning 

issues to the fore, for reasons explained in Section 5. The deeper the source plane, the worse the 

ill-conditioning, until a very modest amount of noise or clutter in data causes completely 

unacceptable distortions in the computations. We show here that this ill-conditioning is 

completely controllable by means of the spectral truncation methods. Two methods are 

investigated, namely, 1) Fourier transformation of both data and source distributions into the 

spatial (not electromagnetic) frequency domain, with truncation of higher and/or weaker 

frequency content; and 2) transformation into an eigen-system framework and truncation of 

equations with weak eigenvalues. The gist of each of these approaches is to translate the problem 

into a basis in which each degree of freedom (coefficient) has a distinctly independent influence 

on the system, and weak participants are readily recognized and discarded. The results suggest 

that, while both methods stabilize the solution impressively in the face of enormous condition 

numbers, neither is likely to be very useful for focusing on subsurface source locations. The 

spectral truncation necessary for stabilization limits the resolution of the computations. At the 

same time, the frequency truncation (FT) approach appears superior in consistency and reliability, 

which relates to the nature of the integral operators used. Examples suggest that FT may also be 

able to suppress amplification of equivalent sources associated with clutter items more shallow 

than the plane of equivalent sources. This strong clutter amplification effect, which compounds 
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but is different from noise amplification by ill-conditioning, is in itself enough to recommend 

caution, if not complete distaste for DCN. 

 

Conclusions together with recommendations for follow-on work are as follows: 

 

1. Downward continuation (DCN) appears to have limited appeal, even if the daunting 

problems of ill-conditioning and clutter amplification are dealt with successfully. Spatial 

frequency truncation (FT) appears capable of stabilizing DCN calculations while 

suppressing clutter amplification. FT warrants further investigation, particularly 

because some of the same problems appear in the generally more appealing upward 

continuation (UC) computations. 

 

2. Upward continuation was eminently successful at clutter and noise suppression in 

all simulation and field examples considered. While ill-conditioning issues can arise 

even in UC calculations, they appear to be readily controlled by spectral truncation of the 

data and of the inferred source distributions. Data were continued easily up to elevations 

where signals were dominated by a deeper UXO, even when very strong signals from 

near-surface clutter items were present  in the original data. This now needs to be tested 

in discrimination studies that exploit such continued data. Note that the continuations 

entail no idealization or non-physical simplifications of responses predicted for higher 

observation points. 

 

3. In conjunction with item 2, sensitivities, minimum data and resolution requirements 

need to be determined for UC. Here only very modest resolutions were employed, with 

no apparent ill-effect. Only ~ 10 cm point spacing was used in the processed data arrays, 

with underlying cross-track resolution really more like ~ 20 cm. Because UC signals 

were generated computationally using integral incorporation of equivalent sources, only 

the same undemanding resolution was required of the source distributions. This is much 

simpler and requires much less resolution that differential-equation-based calculation of 

upper or lower fields from measured boundary conditions. That said, surely some 

resolution constraints will apply. In the examples considered with a sharp clutter spike 

directly on a broader target signal pattern, the success of the method obviously depended 

on the system’s ability to discern that the clutter produced a sharp divergence in signal 

value, i.e. a rapid change in value over space. Beyond this, fundamental uniqueness and 
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invertability questions regarding equivalent source distributions should be clarified 

beyond what was undertaken in this brief study. 

 

4. The prospect that only quite modest arrays of equivalent sources may be sufficient for 

UC and strong clutter suppression indicates that the method should be tested on data 

from such new instruments as those in SERDP project MM-1634 and ESTCP MM-

0601.  The latter, for example, involves an instrument with a five by five array of rather 

large Rx loops, with inherently limited resolution. However, that may not be important 

for UC. The sensor also provides something of a blend of a mono-static data and the fully 

multi-static measurement as considered in this study. While the primary field is 

transmitted in sequence from different positions and is therefore changing, for each 

primary field a number of spatially distributed observations are taken. In the very least, 

we should investigate ways to transform data from both projects by superposition into an 

equivalent distributed response to a broad single excitation, ripe for UC.  

 

5. This last point leads to the most inspiring, but also most challenging prospect, namely, 

generalization of UC type clutter suppression to mono-static data, such as that from 

the EM-61, EM-63, GEM instruments, et al. The formulations would have much in 

common with those generated here, but would also be fundamentally different in their 

meaning.  If one obtains a distribution of mono-static signals over a plane, say, and then 

solves for an underlying distribution of equivalent sources over an arbitrarily deeper 

plane that will reproduce these data, he is really inferring an equivalent object below, not 

a boundary condition. That is, the inferred distribution of sources doesn’t simply succeed 

in reproducing the values over a surface for a single field, and hence allowing calculation 

of the rest of the field (elsewhere). Rather, the equivalent source distribution over (say) 

the surface of the ground must somehow contain all the responsiveness of whatever 

physical sources are distributed in 3-D below the ground. For example, one might 

construct an array or continuous distribution over the ground of magnetic dipoles. Their 

responses would depend on the primary field locally striking them, which might be made 

to reproduce the responses of unknown objects below. At the outset, it is not at all clear 

that this can be done. Preliminary work done by our team using Normalized Surface 

Magnetic Charge (NSMC) [11-13] and related formulations has been suggestive 

however. Because the effective suppression of clutter offers such an enormous benefit, 
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this possibility should be investigated. Then many well developed discrimination 

methods for mono-static data can be applied much more effectively. 

 

6. Not so well developed discrimination methods should be investigated as well. In 

particular, note that one virtue of the UC computations is that no model of a subsurface 

target is required.  No laborious optimizations are required for target location, orientation, 

or properties in order to project the response to another elevation. One simply solves by 

direct computation for equivalent source distributions over an arbitrarily chosen surface 

below the data. This inspires the notion of further “model-free” processing, leading 

beyond signal clean-up to UXO discrimination.  We have investigated such methods 

based on straightforward, robust integral measures of signal properties, such as total 

intensity combined with measures of spatial distribution. Analytical expressions, 

empirical relations, and fancier statistical learning machine experiments suggest that one 

can infer from these signal measures the basic target properties one needs for dig/ no-dig 

decisions: location and size of target. This kind of discrimination processing, which 

requires no target model, optimization, or signal matching, would be performed on 

the UC signal, which would be largely devoid of distortion due to clutter and noise. 
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2. Governing Physics and Mathematical Relations 
 

 Magnetometry and electromagnetic induction (EMI) sensors operate in the magneto-

quasistatic regime (0 ~ 100’s of kHz).  Displacement currents are negligible [5]. Further, in our 

typically shallow UXO discrimination surveying, electric currents in the soil are some nine or 

more orders of magnitude weaker than those in targets of interest, so that the latter dominates the 

fields received by a sensor. This is because, according to the basic continuity laws of 

electromagnetics [5,6], electric fields in a metallic target and in the nearby soil are similar in 

magnitude. However electrical conductivity for UXO metals is on the order of 107 S/m, while that 

of the soil is likely to be at most ~ 10-2 S/m [6]. Hence both electric and displacement currents are 

insignificant in the soil. Both currents types will also be negligible in the air, which possesses 

electrical conductivity that is much less than that of the weakly conducting soil [6].  Altogether, 

this means that, in the region where a sensor resides outside a metallic target, Ampere’s Law in 

Maxwell’s governing equations for electromagnetics [5,6] becomes. 

 

 = = 0⎛ ⎞
∇× ∇×⎜ ⎟μ⎝ ⎠

BH  (3) 

 

For our purposes here, the magnetic permeability μ is constant and can be factored out of the 

equation. Thus both the magnetic flux intensity (B field, in teslas) as well as the magnetic field 

intensity (H, in A/m) are irrotational.  That in turn implies that each can be expressed by the 

gradient of a scalar potential, i.e. 

 

 = -∇ΨB  (4) 

 

Together with Gauss’s law for magnetic fields 

 

 B= q∇ ⋅B  (5) 

 

this implies a governing scalar Laplace equation. 
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 2
B= -q∇ Ψ  (6) 

 

where physically the net magnetic charge density qB is actually always zero.  While nature does 

not permit the existence of isolated magnetic monopoles, i.e. positive or negative points of qB,  in 

some instances, as below, inclusion of this quantity via “equivalent” sources may prove to be a 

useful mathematical device. For example, the basic physically realizable magnetic source form is 

a dipole. While such a structure arises from electric current loops, it can be represented 

conveniently in regions away from the source by the pairing of positive and negative fictitious 

magnetic charges. These produce the correct fields in the sense that, in a region of interest away 

from the source, the fields satisfy the governing homogeneous version of (6) and the relevant 

boundary conditions. If qm is retained as a source term, then the solution of (6) is [5,6] 

 

 ( ) ( )
0

B

S

d
4 -
q

S
′

′Ψ =
′π∫

r
r

r r
 (7) 

 

where S0 is surface on which the equivalent charges reside and r is an observation point. 

 

 Overall, our instruments measure magnetic field, not potential.  Given at least some vector 

components of B measured over a surface, one could in principle use the data as a boundary 

condition on (3) and (5), with qm = 0, and then solve for B in the region above.  However this 

presupposes rather complete, high resolution boundary data in B, particularly if differential forms 

are applied. Finite differencing of the boundary data will generally be severely noise-amplifying.   

Various integral equation solutions for B above a measurement plane are also possible.  In 

general, these also require manipulation of vector components of B and possibly derivatives or 

spatial transforms of those components to obtain the complete information needed. 

 

 The simplest and probably most robust way to express B is via (4) and (7), 

 

 ( ) ( )
0

B
2

S

= d
4

ˆq
S

R
′

′
π∫
r R

B r  (8) 
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where = - ˆ, /′ =R r r R R R  and the equivalent sources do not reside within the region of interest 

although they may be on its boundary.   This is an integral equation formulation, but in qB, not in 

the sense of integral equation formulations only involving fields. A set of equivalent sources in 

(8) will inherently satisfy the divergence-free, curl-free requirements of our governing equations 

within the region of interest. If they further satisfy a legitimate boundary condition of that region 

then they provide all that one needs for complete definition of the field at hand.  

 

 In this study, only time domain (TD) instruments were used, so that B above is actually 

B(r,t). However, this is not significant. One can express the B distribution at any given time just 

on the basis of boundary conditions or source values at that same point in time. That is, time does 

not appear explicitly in (3) - (6). It only enters implicitly through forcing functions, i.e. boundary 

conditions or equivalently through qB. The time and space scales in the MQS regime are such that 

there is no significant delay between changes through time on a boundary or in a source and those 

that result from them, some distance away.  Altogether, noting that the formulation applies 

whether qB is a function of time or frequency, we assume here that a time dependence is implied 

and suppress its expression in the equations.  

 

 Consider a distribution of charge qB over a 2-D the surface S0 (Figure 2), which in principle 

need not be flat. As these are equivalent sources, one may consider that they produce fields as if 

they resided in infinite homogeneous space, i.e. (8) applies without consideration of material 

properties, discontinuities, etc.  The qB could form a continuous function, or be a set of delta 

functions, as shown and as implemented computationally in this study. 

 

 

B
n
(r+)

B
n
(r-)

S
0

q
B

 
Figure 2.  A source distribution of equivalent magnetic charges qB over a flat surface.  
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Standard limiting arguments based on (5) [5,6] produce a relation stating that any jump in the 

normal component of B across the surface is equal to the magnitude of the source concentration 

on that surface. Thus, for a continuous distribution 

 

 ( ) ( ) ( )+ -
n n B 0SB B q ,− = ∈r r r r  (9) 

 

where ( )+
nB r  and ( )-

nB r  are normal field component values on opposite sides of the surface. 

 

 The source concentration at a point radiates equally in all directions, in particular equally 

into the regions above and below the surface. Thus, as suggested in the figure, Bn(r+) and Bn(r-) 

are equal in magnitude but opposite in direction, so that  

 

 ( )B n2q B += r  (10) 

 

If one can obtain sufficiently well sampled Bn values over a surface, this is very convenient for 

computing the field elsewhere as (10) is pointwise applicable.  That is, given a Bn value at any 

point on the surface immediately allows the specification of qB there without further solution. 

Information on this single field component over S0 allows immediate  inference of sources that 

are sufficient for all components of B beyond S0.  However, note that the component used must 

be the normal component, and the sources implied reside on the surface immediately adjacent to 

the positions where Bn was obtained.  As explained in the next section, we obtain as data here the 

surface distribution of a B value component that is in a consistent but arbitrary direction relative 

to the surface normal.  This does not allow us to infer directly, point by point as per (10), the 

value of qB on the data surface. 

 

 To proceed nonetheless, consider an arrangement with magnetic field data B(r) on some 

measurement surface Sm, together with associated equivalent sources distributed on an offset 

surface S0, as shown schematically in Figure 3.  
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S
0
(z=0)

q
B

S
m
(z=z

m
)

 
Figure 3.  Charge sheet offset from observation (data) point. 

 

 

In contrast to the relation in (10) in which the charge value at a single point implies the value of a 

B component there, here all charges contribute to each point value of B. If the charge distribution 

is correct (i.e. such as would be obtained from (10) applied on S0), it will provide all components 

of B on Sm. Conversely, if any of the B components is changed over Sm, that must imply some 

change in the qB. Thus, from data on an offset surface one should be able to solve for the 

underlying qB on S0 using any consistent distribution of values for a given component of B. 

Readers left a bit queasy by this rather sketchy treatment of  uniqueness issues are referred to 

comments elsewhere in this report. As presented thus far, these remarks may at least serve as an 

informative context and motivation to follow the computational procedures successfully applied 

in the project. 

          

  When a component of the response B field in some arbitrary eB̂ direction constitutes the 

data, (8) provides the signal as,   

 

( ) ( )
( )0

B e
m 2

S z 0

z z = d
4

ˆ ˆq
S S

R=

′ ⋅
′=

π∫
r B R

 (11) 

 

which is discretized computationally as 

 

 
J B e ji

i 2
j 1 ji

j=
4

ˆ ˆq
S

R=

⋅

π∑
B R

 (12) 
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The source distribution in (11) has been treated as a collection of delta functions in space, of 

magnitude Bj
q at j′r ;  Si is the signal at ri and Rji is the distance from j′r to ri.  

 

 Lastly, let us note an important distinction regarding the kind of data that can be treated in 

continuation calculations.  Most EMI instruments enlisted for UXO discrimination studies or field 

work produce at least approximately mono-static data.  That is, the signal is received at the same 

location from which the primary (excitation) field is transmitted. This means that, as the sensor is 

moved around an object below ground, each observation represents a view from a different 

position of the target’s response to excitation from that position.  Thus each recorded response is 

a sample of a different response (“secondary”) field. This is fundamentally different from the 

situation that we have considered thus far and will consider everywhere below. In particular, we 

assume that the excitation field is invariant in the sense that it does not change as a result of 

different observation positions of the instrument. In traditional, static magnetometry the 

excitation field is the earth’s field. On the time and space scales of our surveys, this may be 

regarded as constant.  

 

 In our field studies in which continuation is applied (to our knowledge) for the first time to 

transient EMI data, the excitation field is provided by a large loop surrounding the entire site. Its 

excitation field is unchanged as surveyors change position to observe the response field. In either 

this case or that of static, traditional magnetometry, around a given target all data consist of 

different samples of the same response field, which may vary in magnitude and direction from 

point to point. Thus, a sufficient sampling of this field over space can provide a legitimate 

boundary condition on it, or would allow computation a set of equivalent sources that would 

serve the same function.  By contrast, a distribution of mono-static EMI data over a surface (e.g. 

from an EM-61 or GEM-3 instrument), no matter how complete or well resolved, does not 

comprise a sufficient boundary condition in the usual sense. One could not use such mono-static 

data to compute data values elsewhere, at least as described above.  Details of the fully multi-

static observations engaged here are presented in the Section 3.2.  
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2.1. Nature of the TD Magnetometer Data 

 

 The time domain (TD) GAP Geophysics system [8], developed from the Sub-audio 

Magnetics technology, functions by surrounding a field of as much as several acres with a 

transmitting (Tx) loop. Responses from objects within that area constitute the secondary field,  

measured via local roving magnetometers.  While the receivers register a time dependent signal, 

they are nonetheless magnetometers of the sort used in static magnetometry. However here, 

instead of an essentially invariant earth’s field serving as the excitation, the imposed on-off Tx 

loop current provides a single, large primary field that does not vary appreciably over the space 

around the targets. Decaying target responses are recorded during the off phase of the Tx 

currents, when the excitation field is negligible. Despite its TD character, the transient GAP data 

has fundamental links to the earth’s field in a manner reminiscent of traditional magnetometry 

data. This results from a combination of the receiver type and the fact that, while the Tx current is 

off during the recording time, the earth’s field is not.  

 

 The cesium type magnetometer receivers in the GAP system respond fundamentally to the 

magnitude of the total magnetic field that impinges upon them.  That is, the resonances in the 

receiver respond to the total ( ) ( ) ( ) ( )2 2 2
x y zt B t B t B t= + +B  including the earth’s field. 

However, continuation calculations require at least partial information on individual vector 

components.  If one begins with an equation such as (8) but manipulates it so as to proceed in 

terms of |B| instead of B or its components, the problem becomes nonlinear. In addition to adding 

much complexity, the optimizations required to solve for the qB would be vulnerable to non-

uniqueness problems as well. In practice, as explained below, the inclusion of the earth’s very 

large field in the raw data compensates for added complexity by allowing some beneficent 

approximations [9], which in turn permit one to proceed with continuation. 

 

  The perturbation field, b, produced by the target of interest in response to the GAP Tx field 

is much smaller than the earth’s field, Be.  

 

 e e'Earth s field magnitude B b anomaly magnitude= = >> = =B b  (13) 

 

The signal S from the GAP receivers consists essentially of the magnitude of the earth’s field plus 

the perturbation, minus the magnitude of the earth’s field alone. 
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 e eS B= + −B b  (14) 

  

Figure 4 shows the vectors involved.  This is only a schematic diagram in that the origin is 

substantially farther away than is depicted, so that the two vectors containing the earth’s field are 

longer and more parallel to each other than is shown. In any case, even as the figure appears, one 

sees geometrically that the signal consists effectively of the projection of the perturbation b onto 

the direction of the earth’s field.  

 

 

B
e

B
e
  +  b

b

 
Figure 4. Schematic vector diagram of the field impinging on the receivers, consisting of the 

earth’s field with and without the target perturbation b.  
 

 

Expressed in equations,  

 

 

( ) ( )

( )

e e e e e

2 2
e e e e e

e e e e

e e e e e

ˆ1 2

ˆ1 2

ˆ ˆ1 . .

B B

B B b B B

B B B

B B h o t B

+ − = + ⋅ + −

= + ⋅ + −

≈ + ⋅ −

≈ + ⋅ + − ≈ ⋅

B b B b B b

B b

B b

B b B b

 (15) 

 

 

where the higher order terms (h.o.t.) in the Taylor series are easily neglected. With the data 

consisting essentially of the component of the perturbation field in the earth’s field direction, S =  
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be, the governing equation just becomes (11), i.e. numerically (12). This is the relation used in all 

the computations that follow.  A value for eB̂ applicable at Aberdeen Proving Ground testsite was 

obtained from the USGS [http://geomag.usgs.gov/], which furnishes detailed data, charts, and 

models easily capable of producing more accurate values than are needed here.  Using the IGRF-

2005 model from that source for 6/15/2007, lat 39N31 = 39.5167, long = 76W08 = -76.13 

produces components of the earth field  

 

 
e,x

e,y

e,z

20,149 nT
-4,092 nT

48,437 nT

B
B

B

=

=

=

 (16)  

 

which, when translated into the coordinate system used in the analyses (X positive north, Z 

positive up), produces 

 

 e [-0.0778, 0.3830, -0.9205]ˆ =B  (17) 

 

 

  

3. Upward Continuation  
 

3.1. Simulations 

 

Prior to field testing, simulations were performed to assist in algorithm development; to 

validate the concepts and computer codes; and to identify problems and assess the usefulness of 

the approach, especially for clutter suppression.  A target and a nearby clutter item were assumed 

to behave as anisotropic point magnetic dipoles, producing responses according to the relation 

 

( )s tm tm cm cm
m t c3 3

t m cm

ˆ ˆ ˆ ˆ3 3
4 4R Rπ π

− −
= ⋅ + ⋅

R R I R R IH r m m  (18) 
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where Hs is the secondary field at a measurement point rm; the subscript “tm” indicates target-to-

measurement point, while “cm” indicates clutter item-to-measurement point; and mt and mc are 

the induced target and clutter dipole moments, respectively.  The primary field that stimulates mt 

and mc does not appear explicitly in the expressions because, as in the field setting, it is 

essentially uniform and vertical. We assume that the clutter item has an inherently smaller dipole 

moment than the larger target but that its signal obtrudes because it is shallower. The signal 

pattern is complicated as well by the fact that it is sampled in a generally oblique eB̂  direction, as 

per (11). This can cause changes in signal sign from one side of the target to the other even 

although the secondary field is largely vertical. Figure 5 show signal contours for a hypothetical 

situation in which mc = [0,0,10-1],  mt = [0,0,1], and the measurement plane is at Zm = 0.2 m. The 

target is beneath the origin at z = -0.6 m while the clutter item is shallower and is offset, i.e. rc = 

[0.5, 0.5, -0.2] m. The contrast between the top and bottom plots shows the asymmetries 

introduced by the eB̂ sampling of Hs relative to what one would see just by apprehending the 

vertical field component.  

 

 Figure 6 shows an upward continuation test for this situation. The top plot shows again the 

data on the measurement plane, i.e. eB̂ component of the secondary field at Zm = 0.2 m. The 

signal that would be obtained at Z = 0.4 m is also computed directly from the two actual sources 

(middle plot). The bottom plot is obtained by first solving for a plane of equivalent sources qB at 

Zq = 0 using (12), based on the data S at Zm shown in the top plot. This qB solution is then used 

to compute the field at Z = 0.4 m.  Clearly the upward continuation solution does well in 

predicting the signal at a higher elevation. Equally important, both actual and continuation plots 

show a notable diminution of the prominence of the signal from the shallow clutter item. 
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Figure 5.  Simulated responses of a target and clutter item combination, when eB̂ is just ẑ  

(top), and when eB̂ is [-0.0778, 0.3830, -0.9205] as per the APG site (bottom). 

TARGET

CLUTTER
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Figure 6.  Same case as in Figure 5, showing eB̂ component of Hs. Top: Data on 
measurement plane (Zm = 0.2 m). Middle: actual signal that would be obtained at 
a higher elevation (Z = 0.4 m). Bottom: Continuation signal computed for Z = 0.4 
m. 
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 In these computations the dimensions of S0 were the same as those of Sm (see plots).  

Spatial increments between points in the square arrays of data and of sources were the same, 0.15 

m, being only slightly less than the separation between S0 and Sm. While this discretization is 

rather coarse, it still works well and is chosen purposely to avoid ill-conditioning.  With a 

condition number of ~ 75 one would expect distortions in qB when noise at the level shown in 

Figure 7, top, is added (See Section 5).  Here RelNoiseMag = 0.25, where that parameter implies 

added white noise between +/-RelNoiseMag/2 times the signal maximum. While distortions in qB 

may indeed occur, the bottom plot shows that to a remarkable extent their effects are integrated 

out in the course of the upward continuation: resemblance between magnitude and shape of the 

signal distributions in the middle and bottom plots is clear. Thus the qB solution and continuation 

process together appear quite robust in the fact of substantial noise in the data. Both random noise 

as well as physical clutter signals are suppressed by the process.  Figure 8 pursues this, with 

somewhat more moderate noise (RelNoiseMag = 0.1) and mt = [0,1,1] for a more complicated 

response pattern. The system still works equally well.   

 

 Of course, in all this we are primarily interested in isolating the signal from the target itself. 

Figure 9 illustrates the difference between a signal on the data plane from the target alone, 

compared to that from the combination of target, shallow clutter item, and random noise.  When 

upwards continuation processing is applied to the noisy and cluttered data, the results in Figure 10 

are obtained.  Continuation has done a good job of predicting the signal from target and clutter 

item at considerable elevation.  While the magnitude from this combination is still slightly high 

relative to that from the target alone, the differences are minimal.  For all practical purposes, the 

method shows promise for isolating target contributions in a cluttered, noisy signal.  

 

 As mentioned above, noise in the data can distort the qB solution, but in the examples here 

that did not ultimately impact the quality of upward continuation significantly. The distortions are 

still worrisome, however, in that under some other circumstances they could carry through to the 

continued signal. Further, if one wishes to examine the qB solution itself, the distortions could be 

problematical. The distortions in qB can be especially prominent when one chooses geometrical 

parameters different from those above, most notably deeper S0, as for the downward 

computations that are one investigatory focus of this project. Figure 11 shows the qB solution 

obtained in the problem we have been examining, with and without noise added to the data 

(RelNoiseMag = 0.1).  In that  the continuation results are good, the essential source distribution 

is clearly buried within the heart of the distorted solution, whose rapid oscillations are ultimately 
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integrated out in the continuation integration (12). Nevertheless, the lower qB plot is not a pretty 

picture. Especially if distorted further, its pattern would be difficult to interpret and its errors 

could threaten the quality of upward inferences. Section 5 discusses the nature, origins and 

control of such distortions. 
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Figure 7.  Same case as above but with RelNoiseMag = 0.25. Top: Data on Sm at Zm = 0.2 
m. Middle: Actual signal from targets, without noise, at Z = 0.6 m. Bottom: 
Signal at Z = 0.6 m obtained by continuation from qB based on data in top plot.  

 



  -  - 24

           
 

              
 

              
 

Figure 8. Same as previous plot, but with RelNoise = 0.1 and mt = [0,1,1]. 



  -  - 25

 

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

X   (m)

Y
  (

m
)

Total B on measurement surface, Be component

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

 

 

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

X   (m)

Y
  (

m
)

Target only B on measurement surface, Be component

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

 
 

Figure 9. Same in previous figure but showing difference between data with noise and also 
clutter item (top) and from target only (bottom). 
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Figure 10. Same parameters as in Figure 9, showing little difference at elevation between 
theoretical target-only signal (top), that from the target plus clutter (middle), and 
that from continuation using target + clutter + noise on the data plane (bottom). 
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Figure 11. The qB solution for the same case but with RelNoiseMag = 0 (top) and 
RelNoiseMag = 0.1 (bottom).  
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3.2. Field Tests 

 

 During June 2007 the team made measurements with the GAP Geophysics survey system 

[8] at the UXO Standardized Test Site at Aberdeen Proving Ground (APG). A section of field 

approximately 40 m square was surrounded by the transmitter coil and measurements were made 

within it along lines over an area approximately 4 m by 9 m. The wheeled rig proceeded along 

lines guided visually by taught strings. Figure 12 shows the rig proceeding along a line and the 

pattern of receiver positions along all the lines. The rig transported four receivers spaced 38 cm 

apart. Lines were spaced so that the sensor tracks were interleaved, producing on average an 

approximately 19 cm data spacing in the across track direction. Data along track were taken 

approximately every 0.3 sec which, with the slow rate of progress maintained, meant a 1 to 2 cm 

data density in the along track direction. 

 

    
 

Figure 12. Left: survey rig proceeding along a survey line across the edge of the sand pit in 
which targets were buried. Right: the paths of the individual receivers. 

GPS 
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 Targets were buried in about the center of the sand pit (hole in Figure 12, close up in Figure 

13). Primarily, a 105 mm projectile was used in various horizontal, vertical, and inclined 

orientations.  

 

                       
 

Figure 13.  Hole dug in sand pit with 105 mm projectile placed horizontally at bottom and 
clutter item (shotput) on surface, with meter measure. 

 

 

 Positioning data was provided by a GPS antenna attached to the rig, indicated in Figure 12 

and  Figure 14. This was elevated above the receiver platform to avoid electronic interference. It 

was lowered from its initially high position (Figure 12) to that in Figure 14 in order to minimize 

positional error due to tilt of the platform on the uneven ground. Examination of the data along 

the lines suggests a residual random error from platform motion of about 1 or 2 cm.  

 

 As the data density along and across track are quite different, a specialized interpolation 

algorithm was devised to produce 2-D grids of data with uniform spacing in both horizontal 

directions. While data produced by the algorithm should not possess any greater positional error 

than the original, it will not be improved either. This should be born in mind when interpreting 

plots such as the example signal in Figure 15. Drawing contours (i.e. via Matlab) can produce an 

illusion of isotropic resolution, but examination of the horizontal vs vertical patterns in the plot 

reveals the remains of the originally unequal data densities. 

UXO 

Clutter 
item
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Figure 14. Rig passing over target region, with target hole covered by plywood and one (top) 
or three (bottom) shotputs placed nearby to serve as shallow clutter items. 
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Figure 15.  Data from lines such as those in Figure 12 interpolated onto a square grid of 
points at 10 cm x-y spacing. 

 

 

 The spatial distributions of data such as that in Figure 15 pertain to a particular point in 

time. At any given point in space, the sensor’s receivers see a time pattern of magnetic fields 

illustrated in a plot of field data in Figure 16, top, from a relevant portion of the on-off Tx cycle. 

The earth’s field contribution has been subtracted. When the voltage in the Tx cable is switched 

on, before time zero, the current and consequent Tx field rise to an essentially flat, high value, 

which gradually saturates the target.  When the Tx voltage is shut off at time zero, the primary 

field decays rapidly until only the secondary field from the target remains at the receiver. The 

log-log decay of the latter is shown in Figure 16, bottom. Note that the magnitude of the earth’s 

field is ~ 50,000 nT. The magnitudes of signals shown in Figure 16 validate the assumption that 

the signals of interest - the perturbation quantity b above - are indeed much, much smaller than 

the ambient earth’s field. The first time gate in the plot and in data analyzed is chosen to be late 

enough to avoid distortions associated with the lingering decline of the primary field in earliest 

time after zero. In all analyses here, which pertain to spatial distributions of signals at a given 

time, it does not matter much in principle what time point is chosen during the decay in Figure 

16, bottom. In an actual survey one might wish to examine later time points at which responses of 

smaller clutter items might well have diminished, relative to that from larger items of interest. To 

retain focus on clutter vs target signals, it behooves us here to use early time points where both 
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signals are at their clearest. Therefore in all treatments of field data below we choose a time gate 

at 0.625 ms after time zero. 
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Figure 16. Data taken over the peak of the target signal for a 105 mm projectile buried 73 cm 
below the sensor. Top: In linear time, full waveform including Tx field prior to 
time zero, rapid decline after shutoff, followed by slow decay associated with 
target. Bottom: Decay of the target, isolated, relative to log(t). 

 

 

 The level of inherent noise in the data might be best apprehended from the plots of 

individual receiver outputs along the survey lines (Figure 17) rather than by examination of 

interpolated values in Figure 15. Not surprisingly, the relative magnitude of the noise is more or 

less inversely proportional to the overall signal strength. In general, relative to peak data values 

(Figure 17, top), the SNR is good.   



  -  - 33

   

             

             

            
-2 0 2 4 6 8 10

-1

0

1

2

3

4

5

6
X = 1.43

 
Figure 17. Data along survey lines over a vertical buried 105 mm UXO for the same case 

shown in Figure 15, illustrating the level of noise. 
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 For a first look at upward continuation of field data, consider the case of a vertical 105 mm 

projectile buried initially 73 cm to its shallowest point below the sensor (Figure 18). In all cases, 

because it was impractical to redo surveys with the sensor raised to a higher elevation, instead the 

same thing was accomplished by placing all targets deeper (soil response was not significant). At 

the initial distance between sensor and target, some of the apparent lateral (x-direction) spread of 

the signal in the top plot is caused by the rather large separation of the survey lines in that 

direction and interpolation of values in between.  In any case, when the sensor-target distance is 

increased to 96 cm, the response is more clearly centered and also more broadly spread (middle 

plot).  Continuation computations for the 96 cm separation, based on the initial 73 cm data, are 

shown in the bottom plot. Continuation catches all the essentials of the actual elevated 

measurements in both magnitude and spread of the signal, in the process filtering out a good deal 

of random irregularity in the signal.  

 

 The quality and resolution of the data in this example and our ability to institute only 

modest changes in sensor elevation above the target limit the appeal of this example as a 

demonstration of the technique and its benefits. Computations further below exploit the real 

appeal of the method, namely, its ability to project data to separations that could not be attained in 

the physical tests with consequent substantial benefits of clarity.  Remaining for the moment with 

more modest changes in separation for the sake of validation, some results involving clutter are 

illuminating. Figure 19 shows a case in which a single shotput was placed at ground level to serve 

as a clutter item. At the initial elevation, both clutter and UXO are approximately equal in 

magnitude.  When the sensor-target distance is increased (middle plot) signals from both sources 

decline, but the strength of the clutter signal fades relative to that from the UXO.  This is 

reproduced in the signal obtained by upward continuation (bottom plot). The projected 

magnitudes are approximately correct, while the patterns are actually cleaned up.  Continuation 

calculations will reproduce most of the signal irregularities in the original data (see next 

example). However, upward continuation will tend to iron these wrinkles out, for good 

physical/mathematical reasons.  At the same time, actually obtaining signals with the sensor at 

greater distances overwhelms this physical effect, as target signals become weaker relative to any 

irreducible background noise/ clutter. 
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Figure 18. Signal from a vertical 105 mm UXO. Top: Data at d = 73 cm. Middle: Data at d = 
96 cm. Bottom: projection from data at 73 cm to signal at 96 cm.  
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Figure 19. Single shotput clutter case with 105 mm projectile buried vertical nose down 

initially at 73 cm from sensor to tail. Top: Data at initial sensor distance. Middle: 
Data at 23 cm higher sensor distance from both targets. Bottom: Computational 
continuation 23 upwards of data in top plot. 

UXO 
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 An example with two clutter items (Figure 20) shows even more pronounced reduction of 

clutter signals with increased distance from the sensor. The clutter arrangement includes the right-

most two shotputs in Figure 14, bottom. Despite the fact that the identical clutter items were both 

the same distance below the sensor platform, the magnitude of their signals is somewhat different 

because of their differing relations to the survey lines and sensor paths. The shotput near the 

bottom of each plot was located somewhere between the sensor lines such that interpolation 

between the lines could not catch its true peak.  In any case, in the upper plots the greatest clutter 

signal magnitude is on the order of 50% greater than that of the UXO.  At the greater sensor 

distance (bottom plots) the situation is reversed, with the UXO signal now roughly twice that of 

the clutter. Note again that, in addition to reproducing this effect, upward continuation has also 

cleaned up the random noise that actually increases in the physical data taken from greater 

distance.  

 

 Pursuing this, we use the algorithm to continue the data to greater sensor distances than 

were possible to produce in the field. This exploits the greatest benefits of upward continuation.  

Figure 21 shows continuation of the original data to two higher levels, in the course of which the 

two clutter signals fade increasingly. Ultimately it is clear that most of the signal is due to the 

target of interest, the UXO (Figure 21, bottom).  
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Figure 20. Case with clutter produced by two shotputs and 105 mm projectile at center. Left: 
data. Right: Continuation results. Top: Initial elevation. Bottom: 23 cm greater 
distance to sensor for all targets.  
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Figure 21. Computed signals for 105 mm UXO plus two surface clutter items, with data 
continued beyond the 35 cm elevation of the previous figure, to 58 cm, 81 cm, 
and 127 cm (top, middle, bottom).   
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 Before proceeding to the next field test, we return briefly to a modeling exercise to assess 

better what one might expect in more problematical cases.  The cases above treat only instances 

in which distinct clutter appears at positions offset from the UXO response. While this was useful 

for ascertaining the relative strengths of the clutter and target signals, it does not treat the 

situation of greater interest, namely, when the clutter is superposed intrusively on the UXO 

signal. Figure 22 shows one rendering of field data for a case in which the clutter was placed 

directly above the center point of an inclined UXO. The combination of target inclination and the 

applicable eB̂ at APG causes the clutter to appear off center on the target signal distribution.  In 

any case, the clutter produces an impressive spike on the smoother UXO response.  Can the 

method here really help in this kind of situation? 

                  
 

Figure 22.  Field data from a case in which a shotput is placed on the surface above a buried 
105 mm projectile inclined at 45o. 

 

 

 For visual simplicity we assume in a simulation that e
ˆ ˆ= −B z  and the target is a vertical 

dipole which by itself will produce a radially symmetric signal. A horizontally offset clutter item 

with 5% of the target’s dipole moment is placed at 6 cm depth, vs 60 cm for the UXO. This 

produces a bump on the target signal on the measurement plane Sm at 20 cm elevation (Figure 23, 

top) comparable to that in field data in Figure 22. At a height of 1.2 m the continuation signal 

catches the main character of the signal sought from the target alone. It has tracked its decline in 

magnitude from ~ 0.3 to ~ 0.03, with similar spread of the overall pattern. These results suggest 

that even strong clutter directly within the main target response can be reduced by our method. 

Bolstered by this simulation result, we proceed to a comparable case in the field. 
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Figure 23.  Simulation case in which a clutter item is located such that its signal intrudes 
upon that of the UXO. Top: Data plane S0 at Zm = 0.2 m with prominent clutter. 
Middle: Continuation signal from UXO plus clutter at Z = 1.2 m. Bottom: Target 
only signal, also at Z = 1.2 m. 
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 Figure 24 shows results for a case involving a 105 mm projectile buried at a 45 deg 

inclination, with and without a shotput placed directly above. The addition of the shotput (upper 

right) to the scenario with only the UXO (upper left) produces a spike in the signal about two and 

a half times the signal magnitude from the UXO alone. The clutter item changes the signal 

distribution very markedly. However upward continuation of the data including the obtrusive 

clutter catches the main character of data we should expect at elevation from the UXO alone. 

 

  
 

 no shotput                                                                  with shotput 

 

   
 

Figure 24.  Field case with 105 mm at 45 deg inclination and d = -81.5 cm, with and without  
shotput directly above. Top: Data on S0 at 15 cm elevation. Bottom: Continuation 
calculations for 1 m higher elevation. Left: UXO alone (no shotput). Right: UXO 
with shotput above it.  
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4. The Downward Computation Issue 
 

 Downward continuation can mean different things to different people; however, all 

employing it seek in some way to extend above-surface information to infer the subsurface 

situation. At least from the point of view of consistency in terminology, the most logical meaning 

would be use of [above-]surface information to calculate subsurface fields of the same kind that 

were measured. Additionally, we take the term to mean here true continuation involving fully 

multi-static data, as opposed to projection to some other level of mono-static data: A single, 

spatially widespread response field is continued. In this view, detailed surface information is, 

after all, a kind of boundary condition. One can consider the boundary to delimit either an upper 

or lower half space. While here the field values are not calculated directly using integral or 

differential equations, the computational framework is arguably equivalent via the intermediate 

device of equivalent sources. Information at one level is used to solve for distributions of 

equivalent sources over deeper surfaces. This implies directly a distribution of the field 

component normal to the deeper surface, and thence all field components. In any case, by 

computing source distributions over deeper and deeper surfaces one might seek to find a depth 

where the source concentration is greatest, taking this to be the location of the object of interest. 

The motivation can be just to locate the target, or to infer some of its properties by examining the 

focal source distribution. 

 

 Aside from details of computational strategy and their various pro’s and con’s, all 

downward continuation strategies are challenged by the same issues: 1) Separation of the data 

plane and the deeper source (continuation) plane tends to produce ill-conditioned systems; and 2) 

proceeding deeper with the calculations is inherently a clutter/noise amplifying process.  Under 

the conditions with which one must contend here using total field magnetometers, the source 

plane must be displaced to some position below the data plane even in upward continuation. Thus 

ill-conditioning is a potential issue there as well, even in the absence of any more ambitious 

lowering of the source plane. The second issue is limited to downward continuation. The results 

above show smoothing of surface noise as the signal is continued upward. It is not surprising then 

that, proceeding in the opposite direction, one should confront the opposite phenomenon. 
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 To make the problem palpable, the following example considers noiseless data with a 

single source of signal at a specified depth (Z = -20 cm). There is no loss of generality in that 

noise caused by perturbations of some kind at the surface would simply serve as a broader 

distribution particular sources, at a shallower depth. Studying the effects of a single source will 

suffice to make the point. Also, deleting noise beyond what is caused by the discreet object 

avoids confounding the noise/clutter amplification issue with ill-conditioning’s similar effects. 

For simplicity consider the earth’s field to be vertical, and the dipole moment of the object at 20 

cm depth to be m = [0 0 1].  Using data from a plane Sm that is 20 cm above the “ground surface”( 

S0 at Zq = 0), with data and source points on a grid with 10 cm spacing, one obtains the source 

distribution in Figure 25, top. Lowering S0 to -20 cm, i.e. to the same level as the concentrated 

dipole source, produces the middle plot. This is as concentrated a source distribution as the 

particular computational parameters will permit.  

 

 The point of this exercise is apparent in the bottom plot of Figure 25.  Here S0 has been 

lowered another 20 cm to Zq = -40 cm. The computed values oscillate wildly and spread out 

spatially. Both the limits of the oscillations and any smoothing of the distribution comprise values 

that are orders of magnitude higher than the most concentrated sources at the depth of the object 

(middle plot). The system is demonstrating that much more in the way of sources is required at 

more distant regions to produce the effect of the nearer object. Now, if the only purpose were to 

isolate the object, one could perform these computations but then simply discard the results in 

Figure 25, bottom, satisfied that the middle plot represented something of a “focal” point. 

However the problem is clear if one considers that the hypothetical object at 20 cm depth might 

be simply a piece of clutter and the object of real interest deeper. Clearly the kind of source 

distribution in Figure 25, bottom, would obscure any more reasonable distribution associated with 

a discrete target at comparable or greater depth. In the course of downward continuation, the 

computational system will in fact tend to spread and amplify greatly any near-surface 

perturbations or effective sources in the data, independent of (similar looking) ill-conditioning 

effects.  

 

 These results argue strongly against pursuing downward continuation. At the same time, 

one can apply special measures that may help, and which in any case are likely to be required by 

ill-conditioning, to which we pass in the next section. 
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Figure 25. Solutions for qB obtained in a hypothetical example when the target is at 20 cm 
depth. The location of the source plane S0 is at depths Zq = 0 (top), Zq = -20 cm 
(middle), and Zq = -40 cm (bottom). 
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5.  Computational Control of Solutions for 
Distributions of Sources at Depth 

 
 

5.1. Uniqueness and Invertability for Sources 

 

For both the upward and downward continuation strategies pursued here, one needs to 

compute planar distributions of sources at some level below that where data were obtained. 

Especially if one wishes to gain some view of a source concentration around the actual target 

location, it is tempting just to measure the secondary field over a surface at a chosen elevation 

and then, using the equivalent of (12), to solve for a distribution of sources over an entire volume 

below.  Ideally the distribution of equivalent sources would concentrate wherever a significant 

physical source was located. However this problem is inherently ill-posed.  To see this, consider a 

simple case in which the source is a unit magnitude point charge at the origin.  On the basis of (8) 

only a radial field component is produced, namely Br = 1/4πr2.  Using the formulation above but 

applied to curved instead of flat surface, one can produce this field outside a spherical surface 

with some radius r1 by assuming a distribution of equivalent magnetic charge over the surface of 

the sphere.  

 

( ) ( )B 1 r 12 2
1

1 1r =r r > r
2 4

q B
r r

′ = → =
π π

 (19) 

 

By the same reasoning, however, one can also produce the same field from a distribution of 

charges over a different sphere about the origin, e.g. with radius r2 > r1. 

 

 

( ) ( )B 2 r 22 2
2

1 1r =r r > r
2 4

q B
r r

′ = → =
π π

 (20) 

 

Thus at any r > r2 > r1, both distributions of sources produce exactly the same field.  
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 If the sources are distributed over a surface instead of a volume, however, a unique set of 

sources is implied by the fields observed over that surface (see (10) and discussion surrounding 

it). One may specify sources, point by point, just based on direct correspondence to field 

boundary conditions over the surface.  Our computations are a bit more indirect than point by 

point correspondence between 2Hz and qB in that the observed field values on Sm are offset 

spatially from the surface S0 on which the sources lies.  However the same logic prevails: a given 

field boundary condition on S0 will produce specific field values in the region above it. Any 

alteration of those boundary values will inevitably produce a change in field values somewhere in 

the region above, i.e. where Sm is. Therefore only a single boundary condition on S0 and single 

corresponding source distribution on it will produce interior field values that match those 

observed over the entirety of Sm.  

 

 We take the gist of the discussion above to imply that one may assume that a unique set of 

sources qB is implied over a plane by our observations of some component of the field over Sm. In 

fact, some issues of invertability and uniqueness, necessity and sufficiency of conditions are not 

addressed in complete depth in the foregoing discussion. While reserving full pursuit of those 

issues for follow-on work, we take the reasoning above together with computational experience to 

provide confidence that the numerical system (11)-(12) is inherently invertible. 

 

 

 

5.2. Ill-conditioning and Its Control 

 

 Unfortunately, while this is reassuring, we have not entirely escaped the issue of ill-

posedness in the form of its numerical first cousin, ill-conditioning.  The problem is that, as the 

surface S0 is located at increasingly greater depths relative to the observed data, the system 

becomes increasingly ill-conditioned.  To understand this, consider the following relation 

 

 
PR
ax ax

4 PR
tr tr

2 0
0 10

H S
H S−

⎧ ⎫ ⎧ ⎫⎡ ⎤
=⎨ ⎬ ⎨ ⎬⎢ ⎥

⎣ ⎦ ⎩ ⎭ ⎩ ⎭
 (21) 

 

This might apply to the EMI response of some very elongated object, when the coordinate system 

is aligned with the axial and transverse axes of the object. The axial and transverse sensor signals 
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on the right hand side are related by the matrix diagonal values to the impinging primary fields 

along the those same axes.  Suppose we observed the signals on the right hand side and wished to 

infer the primary fields hitting the target that had produced them.  In this instance, with real data, 

the problem would be quite difficult even though the matrix is immediately invertible by 

inspection. This is because, in our example, the transverse response is inherently so weak. Given 

comparable values of PR
axH and PR

trH , the transverse signal trS will be much weaker than axS . 

trS may likely be predominately noise. This will produce a greatly distorted value of PR
trH when 

trS  is divided by 10-4.   

 

 Basically the matrix in (21), while perfectly legitimate and consistent, is telling us not to try 

to solve for the second unknown because its effects are much too weakly represented in the 

system to be clearly distinguishable.  The difficulty is also evident if one simply rotates the 

coordinate system so that the matrix becomes  

 

 
1.0 0.9999

0.9999 1.0
A ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (22) 

 

Here the pathological nature of the system is clear in another way: the original system is 

equivalent to having two nearly identical equations, a bad prospect for solving for two unknowns. 

For all practical purposes, the system really only contains one independent statement. 

 

 The degree of ill-conditioning in a system is typically quantified in terms of condition 

number C, which equals the magnitude of the ratio of the largest to the smallest eigenvalues of 

the matrix. In this example C = 2 x 104, as the matrix in (21) in fact contains the eigenvalues on 

the diagonal.  A rule of thumb is that a condition number on the order of 10n will amplify 

unacceptably noise that is on the order of 10-n or larger relative to significant values of the data.  

That is, for stable, accurate solutions, one requires an SNR at least on the order of C, ideally an 

order of magnitude better. This is a challenging requirement. For problems such as those 

considered here, C values greater than 100 appear very easily, whereas an SNR greater than 100 

is normally very hard to come by. 

 

 Referring back to Figure 3, one can see how ill-conditioning may arise in applying (12) 

here. If two source points on S0 are too close together, they will produce very nearly the same 
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equation in the governing matrix: each has nearly the same influence on the data. For a given 

separation of source points, moving S0 further away from Sm has the same effect as moving the 

source point closer together in terms of our ability to distinguish their influence. By analogy, if 

each source in a group of such source points emits a glow of light, when they are moved far 

enough away from the observing surface they will simply appear as a single blob of glow with no 

distinguishable effects attributable to the individual sources. Similarly, placing the observation 

points on Sm too close together will have the same effect. Overall, trying to increase resolution by 

using finer divisions on either S0 or Sm will exacerbate ill-conditioning in a highly nonlinear 

fashion.  

 

 In the field cases considered in this report, care was taken in terms of separation of S0, Sm, 

source points, and observation points so that ill-conditioning was not a problem. However, only 

small changes in these spacings would be required to produce substantially worse conditioning. 

Overall, in general application of the methods of upward continuation proposed here over any 

variety of situations, the appearance of ill-conditioning problems is virtually inevitable. Further, if 

one attempts to move the S0 source plane farther and farther away from the data plane - proposed 

here for isolating physical sources - problematical ill-conditioning is to be expected.  Figure 11 

illustrates a simulation case in which spacings that were not at all extreme produced substantial 

noise amplification via ill-conditioning. 

 

 In computational practice the matrices to be dealt with do not normally present themselves 

in such a convenient form as that in (21).  While the actual matrices from (12) are full, as in (22), 

their insufficiency is much less evident. They are much larger; the full matrix system is not 

readily seen as a geometrical rotation of a clearer system; and problematical components are not 

readily visible as being too similar to one another. At the same time, generalized “rotations” may 

be applied so that the system is translated into an eigenvalue-eigenvector basis. The material 

below pursues ways to use eigenvector and other decompositions of the system to restrict the 

solution to well-supported components. 

 

 The overall strategy here of evading ill-conditioning can be outlined as follows. Consider a 

linear system 

 

 [ ]L q H=  (23) 
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in which L is some linear operator, e.g. the matrix implied by (12). H constitutes the data and we 

are to solve for q.  Re-express the quantities H and q so that they are expressed by series 

containing a new basis.  

 

 ( ) ( )j j m m
j m

L q H
⎡ ⎤

=⎢ ⎥
⎣ ⎦
∑ ∑r rφ φ  (24) 

 

The functions φm and φj are members of the new basis and Hm and qj are coefficients. The bases 

need not be the same for both H and q though in what follows they will always be so. 

 

 Multiplying (24) by any one basis function φi and integrating (taking a suitably defined 

scalar product <...>)  produces the relation 

 

 j i j m i m
j m

q L H⎡ ⎤ =⎣ ⎦∑ ∑φ φ φ φ  (25) 

 

and one can now solve for the coefficients qj.  The change of basis is selected in such a way that 

the system can be truncated sensibly, altogether deleting equations and corresponding 

(transformed) unknowns that have weak support. The basis functions are constructed so that they 

are independent and, ideally, orthogonal under the scalar product definition, i.e. 

 

 i m imφ φ δ=  (26) 

 

where δij is the Kronecker delta. Strong independence in the form of the orthogonality is 

advantageous in a number of ways. First, we noted above that when source or observation points 

are physically close to one another so that their contributions to the system are similar, ill-

conditioning will tend to result. Hence here we seek a mathematical space in which to operate in 

which the known and unknown quantities are associated with maximally independent influences 

in the system. Secondly, (26) simplifies computations greatly. In matrix terms, i mφφ  just 

becomes a diagonal matrix and therefore no onerous manipulations are required to invert the 

system. Lastly but perhaps most important, one can examine the elements on the diagonal matrix 
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i mφφ  to see directly and easily which of them are weak, hence where to truncate the series in 

(25). 

 

 In what follows we examine two approaches to transforming the system into a form in 

which weak elements are discernible and readily subject to elimination, namely use of 

eigenvector bases and of sinusoidal bases. 

 

 

5.2.1. Eigenvector Decomposition and Exclusion of Weak 
Eigenvalues 

 

 The eigenvector decomposition approach to dealing with ill-conditioning has been 

recognized in a number of numerical applications, e.g. [10].  One proceeds as above, using (12) to 

produce an algebraic equation of the form 

 

 Aq H=  (27) 

 

where H is a vector of the data and the vector q contains the point sources to be obtained. The 

transformations operate directly on the already discretized system, not on the original continuous 

integral relation (11).  

 

 The matrix A is decomposed in terms of its eigenvectors and eigenvalues as 

 

 TA Q Q= Λ  (28) 

 

where Q contains the normalized eigenvectors and Λ is a diagonal matrix of eigenvalues. While 

similar formulations may be produced for rectangular systems of equations, in all examples here 

square matrices are used so we remain with the form in (28).   By virtue of their mutual 

orthogonality property, the normalized eigenvectors form a matrix with the property that its 

transverse is its inverse: 

 

 TQQ I=  (29) 
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The quantities H and q can be re-expressed in an eigenvector basis as 

 

 
H Q
q Q

η
ν

=
=

 (30) 

 

Combining these equations produces an algebraic system in terms of quantities in the transformed 

space, i.e. in the new variables T T,Q H Q qη ν= = . 

 

 η ν= Λ  (31) 

 

The inversion of this system is immediate, as the matrix Λ is diagonal. This set of steps is the 

equivalent of starting with the matrix in (22), for example, and transforming it to that in (21).  

Ultimately, source values q can be obtained from the solution for the transformed variable ν via 

(30).  

 

 The point of these manipulations is that, as in our treatment of (21), one can discern readily 

in the transformed system what equations are too weak to merit inclusion in the total system.  

Equations in (31) containing eigenvalues that are smaller than some cutoff α relative to the 

maximum (absolute value) λmax are discarded.  That is, the complete solution ν is approximated 

by ν , 

 

 
i

i max
ii

i max

,

0,
ν

η λ λ α
λ

λ λ α

⎧ ⎫>⎪ ⎪= ⎨ ⎬
⎪ ⎪≤⎩ ⎭

 (32) 

 

from which   

 

 mq q Qν≈ =  (33) 

 

Note that this produces the same number of elements in q as before (n), but simply using a subset 

of m of the complete set of n eigenvectors. Using the complete set of eigenvectors (m = n) will 

produce strict equality between q and qm. 
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 To investigate and to illustrate eigenvector decomposition we pursue some simple 1-D 

examples. The solution is taken to be ( )sin / 33q nπ=  and a 100 x 100 symmetric matrix A is 

produced using a random number generator, resulting in C ~  5 x 103.  H  is obtained from Aq. 

Error in the data H is produced by adding random white noise over a band of values [-b, b], where  

 

 
max

2 0.05bRelNoiseMag
H

= =  (34) 

 

This combination of C and RelNoiseMag will normally produce an unacceptably distorted 

solution: the SNR (loosely defined) is on the order of 20, while something on the order of 5000 or 

better is needed. Figure 26 shows the right hand side (data, H) obtained from the A and q that 

have been specified.  Note that the noise is considerably less than is typically the case in real field 

data. 

 

 
Figure 26. Right hand side H in (27), with and without noise at RelNoiseMag = 5%. 

 

 Without added noise, the precision of the data H (roundoff error in the computer) still 

securely places its SNR above that required by the condition number. Hence the noise free 
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solution of (27), not shown, is extremely accurate, with no graphically visible distortions. At the 

other extreme, direct solution of the system with added noise at the indicated level produces q 

values that are predominately just amplified noise. If one retains the noise-free data and truncates 

the eigen-system, using a cutoff of α = 10-2 with resulting m/n  =  85/100, the solution in Figure 

27, top, results. The solution visibly follows the actual (exact) solution.  However, truncating the 

eigen-system at a “safe” level discards enough meaningful information so that, in translation back 

from ν to q, the deletions cause lumps and bumps. This highlights a basic problem in the eigen-

system truncation approach. Namely, the nature of different portions of the information in the 

eigen-system may not mean that retaining values above a certain level of significance will 

translate into values above that level of significance in the original space.    

 

 Figure 27, bottom, shows the solution obtained by the same eigen-system truncation but 

using the noisy data in Figure 26.  There are discernible differences between the solution from the 

noise-free and noisy data.  However these are slight. The eigen-system truncation has indeed 

restrained the influence of noise in the data to a minor factor, although the truncation itself has 

still left some distortions. 
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Figure 27.  Top: truncated eigen-solution without noise added to data. Bottom: same, but 
when noise was added to the data.  
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5.2.2. Fourier Decomposition and Exclusion of 
Insufficiently Supported Spatial Frequencies 

 

 The formulation in this approach operates directly on the continuous variables and integral 

expression (11), producing an alternative discrete system which is readily truncated to advantage. 

It exploits relations and strategies outlined in [2]. Essentially, the system is translated into the 

(spatial) frequency domain, in terms of spatial 2-D Fourier transforms of both the data and of the 

source distribution. This allows one to solve for qB coefficients, again without in fact inverting 

any matrices, truncating the system at spatial wave numbers beyond which contributions are 

negligible.  Note that, without treatment, the solution noise that “slips through” the linear operator 

from the data tends to correspond to high spatial frequencies. In Figure 11, the very substantial 

distortions in the solution appear in the form of values oscillating between relatively large 

positive and negative values between neighboring points. From one point of view, this is a 

relatively benign form of noise in that it tends to integrate out when one uses (11) to calculate 

field values at some elevation. The (numerically expressed) integral has something of a “blind 

spot” for information at this frequency. This is convenient for upward continuation. However, 

when one proceeds in the inverse direction, the integral and its numerical equivalent are not good 

at restricting data noise of this wavelength from assuming an arbitrary large value in the solution.  

Our strategy will be to recast the system in the frequency domain and then to forcibly truncate the 

participation of frequencies higher than the system will readily support accurately.  

 

 To proceed, express qB as 

 

 ( ) m n
M N

B m,n
m=1 n=1

ik x ik yq e eσ ′ ′′ = ∑∑r  (35) 

 

Equation (12) becomes 

 

 ( ) ( ) ( )( )
( ) ( )0

m n
e

e m,n 3/ 22 2 2m,n

ˆ ˆ ˆ ˆ

4

ik x ik y

S

e e x - x y - y d
b dS

x - x y - y d
σ

π

′ ′ ′ ′⋅ + +
′=

⎡ ⎤′ ′+ +⎣ ⎦
∑ ∫

B x y z
r  (36) 
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where, conveniently, we benefit from the fact that ( )z z′−  is uniformly equal to some depth d 

(both data and sources are assumed to be located on planes of constant z).  In principle, the 

expression in (35) could be written as an integral of continuous quantities rather than a finite sum 

of discrete terms.  In that case, any two different k values, say, ki and kj will be associated with 

basis functions that fulfill our orthogonality requirement that  

 

 ( )i j
i jei k k xdx

∞
′−

−∞

′ = δ∫  (37) 

 

so that (26) applies.  In numerical practice, the integration is over some suitable finite interval and 

a corresponding finite selection of k values is used, as in the summation (35).  For example, 

driven either by the need for a certain minimum domain size or a certain spacing of 

wavenumbers, one might pick the domain size L with km = 2πm/L.  Matlab, in which language 

system the computations here were performed, automatically applies a k selection of this sort in 

its FFTs and IFFTs so that a discrete form of (37) holds exactly.  

 

 

 With a change of variables 

 

 ,u x x v y y′ ′ ′ ′= − = −  (38) 

 

(36) becomes 

 

 

( ) ( )
( ) ( )

( )

m n
m n

m n

e
m,n 3/ 22 2 2m,n ,

m,n m n
m,n

ˆ ˆ ˆ ˆ

4

,

ik u ik v
ik x ik y

e
u v

ik x ik y

e e u v d
b e e dS

u v d

e e V k k

σ
π

σ

′ ′− −∞

′ ′=−∞

′ ′⋅ + +
′=

⎡ ⎤′ ′+ +⎣ ⎦

=

∑ ∫

∑

B x y z
r

 (39) 

 

where V need only be calculated once for each d.  It is basically just a weighted FT of the Green 

function for be, referred to the origin.  A significant attraction of this approach is that all r 

dependence of be (beyond d) is contained in the exponentials m nik x ik ye e outside the integral. 

Values of V for each d can simply be stored and used for arbitrary r as required.   
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 The remaining exponentials in (39) can be integrated out if one expresses be itself as 

 

 ( ) m n
m ,n

m ,n

ik x ik y
eb p e e′ ′

′ ′
′ ′

= ∑r  (40) 

 

for the same set of wavenumbers as were used for qB. The coefficients m ,np ′ ′  are simply obtained 

from the FT of the data. To conclude, substitute (40) into (39), multiply by ji ik yik xe e−−  and 

integrate (x,y) each over ( ),−∞ ∞  or over the aforementioned suitable interval, to obtain  

 

 ( )i,j i,j i j,p V k k= σ    (41) 

 

for each (i,j).  As in the previous approach, all quantities are now scalars and no matrix solution is 

required.  

 

 The truncation is accomplished by retaining only spatial frequencies that contribute to the 

solution securely:  

 

 ( )
i,j

max
i ji,j

max

,
,

0,

p
V V

V k k

V V

α
σ

α

⎧ ⎫
>⎪ ⎪

= ⎨ ⎬
⎪ ⎪≤⎩ ⎭

 (42) 

 

 

While geographically applicable eB̂ may make the k dependence of V non-monotonic, the system 

in (42) succeeds in filtering out all frequencies with insufficient support, whether high or low. In 

any case, the nature of Fourier decomposition is such that k values above some level will 

inevitably contribute little to both the data and the solution, whatever the pattern of dependence 

on lower k values. High frequency noise influences will be filtered out. 

 

 Equation (41) indicates that individual Fourier components of the data are only associated 

with individual, corresponding Fourier components of the source distribution. This prompts the 

question of whether the necessary truncation of k space for V will be sufficient to define qB well.  
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This relates in part to the frequency resolution level that is inherent in the integral operator. 

Probably of greater concern is the specific frequency content of the data, i.e. whether the range of 

significantly contributing wavenumbers in the data is sufficient for the requirements of σi,j.  The 

spatial distribution of the data be will in general be broader than that of qB as deeper and deeper S0 

are considered and qB becomes increasingly concentrated. Higher and higher k will be required 

for qB, which may not be supported by be, i.e. the corresponding pi,j may be essentially noise. 

 

 To explore these questions and to test the frequency truncation approach overall, we begin 

with a simplified simulation case in which the earth’s field ( eB̂ ) is vertical and the responding 

subsurface body is a vertical dipole. This produces symmetrical signal patterns that are easy to 

assess visually. With the target at d = -0.5 m and α = 0.01, the solutions in Figure 28 result. The 

upper right plot in the figure shows what perfect, noise-free data would look like.  The two plots 

of the noisy data reconstructed from the truncated qB solutions (middle and bottom right) 

illustrate the level of clutter in the noisy data. Without either eigen-system or frequency value 

truncation, a direct solution for q contains very large oscillations between neighboring points 

(upper left plot).  In contrast, both of the truncated systems produce tolerable renderings of an 

equivalent source distribution half a meter above the actual, infinitely concentrated physical 

source (middle and bottom left plots).  

 

 Lowering the source place S0 in order to cause the q pattern to focus on the physical source 

location produces the results in Figure 29.  The truncated solutions succeed at least in the sense 

that they remain coherent, with noise suppressed. By contrast, a direct q solution (no truncation, 

not shown) for Zq = -0.5 m covers whole plane, oscillating between + 1010.  However neither of 

the truncated solutions focuses notably on the infinitesimal physical source. As Zq drops below 

zero (“ground surface”) and the condition number rises exponentially, the eigen-system 

truncation allows fewer and fewer eigenvectors to participate (m/n decreases, see plot headers). 

Similarly, the resolution of the frequency truncation system is also limited, either because of the 

limited range of the spectrum of the data or of the (numerical) integral operator, or both. The 

finite focusing of the truncated solutions in the figures is summed up in Table 1. These results 

suggest that, while both methods stabilize the solution impressively in the face of enormous 

condition numbers, neither is likely to be useful for focusing on subsurface source locations.  
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Figure 28. For data taken 20 cm above the surface, with the source plane S0 on the ground 
surface (Zq = 0 cm).  Left: Direct q solution (top); that from the truncated FT 
(middle); and that from the truncated eigen-system (bottom). Right: Data without 
added noise (top); noisy data reconstructed from truncated FT source solution 
(middle); same, reconstructed from truncated eigen-system (bottom).  



  -  - 61

     

  

Figure 29.  Source solutions for S0 surfaces deeper than that (Zq = 0) in Figure 28.  Here Zq 
= -0.25 (top) and -0.5 (bottom), the latter being the depth of the point physical 
source. Left: q from frequency truncation. Right: qm from eigen-system 
truncation. 

 

 

 

Table 1. Depth Zq of surface S0 containing equivalent sources q; approximate spatial width 
of the truncated q solution; condition number C of the governing matrix before 
truncation. 

 

 

 

 

 

Zq  approx q width  C 

0 1 m ~ 104 

-0.25 m 0.5 m ~ 4 x 109 

-0.5 m 0.6 m ~ 2 x 1015 
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 To distinguish better between the performances of the two truncation systems, we perform 

another test with somewhat more realistic i.e. complex patterns in the relevant quantities. While 

the target is again at Z = -0.5 m, its moment here is m = [0,1,1], as if it is tilted (the previous 

vertical dipole had m = [0,0,1] ). Further, a non-vertical eB̂ is assumed, in particular, that which 

applied at the APG test site, eB̂  =  [-0.08, 0.38, -0.92]. Computations for both truncation systems 

were performed with α = 0.01 and RelNoiseMag = 0.01. The changes introduced relative to the 

first test produce more complicated signal distributions and V(k) patterns. Evidently the eigen-

structure of the system is also more complicated in such a way that simple truncation has 

unanticipated and unwelcome effects.  The computed q distributions in Figure 30 show that 

frequency truncation produced an orderly shape reflecting the Y-Z tilt of the target. The eigen-

system truncation results are irregular and do not show the physical Y-Z spread of source action 

in the central cluster.  Further (Figure 31), when the data on the measurement plane is 

reconstructed using these truncated q solutions, that from the frequency truncation approach is 

much superior in both magnitude and shape.   

 

 Whether this picture might be altered by some sort of strategic manipulation of particulars 

in the truncation systems - e.g. adjustment of α or other means of selecting residual participants 

in the eigen-solution - must be determined by subsequent research.  Overall, as they stand these 

results suggest that eigen-system truncation could not be relied upon either for downward 

solution for source concentrations or for computation of above-ground signals. Frequency 

truncation appears able to produce tolerable equivalent source distributions, albeit limited in their 

concentration, with the ability to compute consistent above-ground signal patterns. 
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Figure 30.  Truncated solutions for equivalent source distributions with Zq = -0.25 when the 
physical target is at -0.5 m. Top: frequency truncation. Bottom: Eigen-system 
truncation. 
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Figure 31. Distributions of the data on the measurement plane Sm. Top: “Actual” data with 
(left) and without noise (right). Bottom: Data on measurement plane 
reconstructed from truncation solutions based on the noisy data, derived from the 
frequency (left) and eigenvalue truncation solutions for q (right).  

 

 

 

        Be component on meas plane, no noise 
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5.2.3. Control of Clutter Amplification as Well? 

 

 

 As a last experiment, consider a case again with the earth’s field vertical, including a 

vertical dipole target ( m = [0, 0, 1] ) at 60 cm depth, offset from which is a piece of clutter ( m = 

[0, 0, 10-1] at 20 cm depth. In order to focus on amplification of the clutter source at depth (see 

Section ***), we assume no random noise in the data such might be amplified by any ill-

conditioning. As S0 is lowered the computations produce the equivalent source distributions in 

Figure 32, both with (α = 0.01) and without frequency truncation. For a source plane S0 on the 

“ground surface” (Zq = 0) above both items, both direct (non-truncated) and truncated solutions 

are the same . At Zq equal to the clutter depth, the solutions are dominated appropriately by the 

clutter item, more so in the direct solution. With deeper S0 the direct solution is increasingly 

dominated by the sources pertaining to the clutter, which spread and increase in magnitude. 

Additionally, with C increasing to ~ 5 x 1011 at Zq = 60 cm, any noise whatsoever in the data 

would have further swamped the direct solution, causing high amplitude, high frequency 

oscillations over the entire domain.  However, in our noiseless example, the frequency-truncated 

solution retains a more appropriate character and magnitude, some distortion notwithstanding. 

Perhaps most notably, the frequency truncation appears to restrain the tendency of the clutter-

related sources to dominate the solution at depths greater than the clutter item itself. This implies 

some limited deletion of signal content in the sense that a reconstruction of the data on the 

measurement plane Sm from the truncated q at Zq = 60 cm shows limited resolution (Figure 33).  

However, the gross features and appropriate magnitude of the data are retained. 
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Zq =0         

Zq=20cm  

Zq=40cm  

Zq=60cm  

 

Figure 32. Equivalent source distributions computed on planes at various depths, Zq. Left: 
Direct solution (no truncation). Right: Frequency truncation.   
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Figure 33.. Same case as above, showing reconstruction of the data on the measurement 
plane Sm from the truncated q at Zq = 60 cm. 
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